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Abstract. A perihelion (unit) vector-the generalisation of the Runge-Lenz vector obtained 
by Fradkin is investigated. Its evolution, viewed as its dependence on the position and 
momentum vectors of a particle moving along its trajectory, demonstrates that, in general, 
i t  depends on time. For trajectories having the form of closed orbits with one pair of 
turning points, the perihelion vector turns out to be time independent and therefore a true 
integral of the motion. When a closed orbit possesses n pairs of turning points, an n-arm 
star of n different perihelion vectors is an invariant of the motion. In this case integrals 
of motion in the form of an n-rank tensor can be constructed from the perihelion vectors. 
Conditions for the existence of closed orbits are derived and illustrated by examples of 
the motion in the Kepler potential perturbed by a centrifugal-like term and in the isotropic 
harmonic oscillator potential similarly perturbed. 

1. Introduction 

The density functional theory of closed-shell atoms leads to a characterisation of the 
ground-state electron density n( r )  by a central potential energy V (  r ) .  Unfortunately, 
this potential involves a contribution G E , , / S n ( r )  from an, as yet unknown, exchange 
and  correlation energy functional E , , [ n ]  (see, for example, Slater (1951) whose work 
was formally completed by Kohn and Sham (1965)). 

Nevertheless, it is of interest to enquire whether the very existence of such a central 
potential V (  r )  has consequences for atomic theory. Thus, it is known that, for motion 
in a bare Coulomb field, the classical Runge-Lenz vector of the Kepler problem has 
a ready generalisation to quantum mechanics (see Hostler 1967, Blinder 1984). (For 
the history of the classical Runge-Lenz vector, Goldstein (1975, 1976) may be con- 
sulted.) 

This has prompted us to study further the classical problem of a suitable generalisa- 
tion of the Runge-Lenz constant of motion for a bare Coulomb potential to an  arbitrary 
central potential V (  r ) .  However, there is already extensive relevant background to 
this study, which it is important first to summarise below. 

Let us start by recording certain well established facts, 
( a )  For the Kepler (Coulomb) problem, with potential V ,  = - A / r ,  there exist 

constants (integrals) of the motion, which are the three components of the Runge-Lenz 
vector: 

A = ( - 2 E ) - ” ’ [ ; ( p  x L -  L x p )  - A m r / r ] .  (1.1) 
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These components, together with the components of the orbital angular momentum 
vector L, generate an algebra of the Lie group O4 (see, for example, Fradkin 1967). 

( b )  For the isotropic harmonic oscillator ( I H O )  with potential V,  = ~ ’ r ’ / 2 m ,  there 
exist constants of motion in the form of a symmetrical second-rank tensor (five 
independent components) 

which, together with L,, generate an algebra of the Lie group SU, (see, for example, 
Fradkin 1965). 

( c )  For both potentials, in the case of classical (rather than quantum) mechanics, 
these Lie algebras are given in terms of the Poisson brackets (in quantum mechanics: 
commutators). This additional symmetry (compared with three-dimensional rotational 
symmetry: 0,) is termed dynamical symmetry. Extra degeneracy of quantal solutions 
results from these dynamical symmetries. It is to be noted that the classical and quantal 
cases have the same additional invariants (additional symmetry). 

The question as to whether other rotationally invariant time-independent potentials 
have dynamical algebras for quantum systems has been investigated by Truax (1980). 
He demonstrates that oscillator, Coulomb and constant potentials are special, in the 
sense that their dengeneracy algebras are all larger than O3 (i.e. SU3,  04, SU3). All 
other central potentials possess 0, symmetry only. 

In the context of the present classical study, it is important to note that the same 
question has been addressed by numerous authors (Konar er a1 1966, Fradkin 1967, 
Mukunda 1967, Stehle and Han 1967, Heintz 1974, Buch and Denman 1975a, b, Peres 
1979, who was, however, not aware of Fradkin’s (1967) paper especially). Without 
attempting a review at length of this extensive body of work, it should be noted that 
Peres rediscovered Fradkin’s proposed generalisation of the Runge-Lenz vector, 
although the coefficients in the definition (scalar functions) are given by Peres via 
differential equations, which remain unsolved. He finds that it is not possible to derive 
a solution regular at both turning points. 

What emerged from our study of the above papers on the classical Runge-Lenz 
problem was that a diversity of opinion still existed, in spite of the substantial body 
of work listed above. The main divergence of opinion centres around the existence 
of an additional symmetry (specifically 0, and SU,) for various potentials. Some 
workers connected this symmetry property with the generation of closed-orbit trajec- 
tories by a given force field. However, a different opinion was expressed, i.e. that such 
dynamical symmetry is quite a common property, possessed not only by central 
potentials, but which can even exist for arbitrary three-dimensional potentials. The 
motivation for the present work was to clarify this diversity of viewpoint. 

Finally, in this brief review of earlier work, it should be mentioned that an 
approximate solution of the quantal motion for a general central potential has been 
attempted (Five1 1966, Serebrennikov and Shabad 1971), the latter basing their work 
directly on Fradkin’s generalisation of the Runge-Lenz vector. 

To conclude this introduction, the motivation for the present study needs somewhat 
further emphasis. First, Fradkin himself, and others, were aware of the fact that the 
generalised Runge-Lenz vector (denoted as RV below) he proposed is only piecewise 
conserved, or alternatively that it is a multivalued constant. Nevertheless, these authors 
remained convinced that the R V  proposed is a true integral of the motion because, as 
verified by Fradkin, the Poisson bracket of this vector with the Hamiltonian is zero. 
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Since, in our view, the above two facts cannot be reconciled, we have investigated this 
problem in a different manner, in order to resolve this contradiction. While Fradkin’s 
proof of the constancy was of differential character, our approach may be termed an 
integral one, since we have studied the time evolution of Fradkin’s R V  via its dependence 
on r( t )  and p (  t), which are both obtained by an integration of the equation of motion. 

In connection with the present investigation we find it necessary to generalise the 
notion of an integral (or constant) of the motion. The object, which can be defined 
solely in terms of the canonical variables ( r  and p )  of the moving particle and which 
is independent of time, will be called an invariant of the motion. We will apply this 
definition to an n-arm star of vectors, as well as to scalars, vectors or tensors (integrals 
of the motion). 

The outline of the present paper is therefore as follows. In section 2, the time 
dependence of Fradkin’s RV will be studied in some detail; for reasons set out there 
his RV will be subsequently termed the perihelion (unit) vector. Section 3 then consists 
of a formulation of the condition for a perihelion vector to be an integral of the motion, 
while in section 4 an invariant of the motion is constructed in the form of a star of 
perihelion vectors. Section 5 finally builds tensor integrals of the motion, constructed 
out of perihelion vectors. In the appendix, the time dependence of r and p ,  describing 
the motion of a particle in an arbitrary central field, is set out. 

2. Time dependence of Fradkin’s vector k:  the perihelion vector 

Fradkin (1967) proposed the vector 

which he termed a unit Runge vector, as a generalisation of the Runge-Lenz vector, 
known for the Kepler problem, to an arbitrary central potential V ( r )  = V(Ir1). Here 
the angular momentum 

L = r x p  (2.2) 

U = l / r  (2.3) 

is, of course, a constant of motion. The quantity 

will be used as an independent variable of the function$ Fradkin defined this function 
as 

for, in general, relativistic motion of the particle. Since we are interested in the 
non-relativistic case only, we shall rewrite ( 2 . 4 ~ )  by taking the limit c + CO to find 

f = f ( u ;  L‘, E )  =cos (i 1’ du‘[i(u’)]-’/2) 
U11 

where 

(2.4b) 
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and the total non-relativistic energy E,  another constant of motion, is given by 

Throughout, f = x /x  denotes a unit vector. 
Using the identity 

rL2 ~ x r ( p .  r )  
r2  r2L2 

p x L = - -  

which follows from the definition (2.2), equation (2.1) can be transformed to 

( P ’ r )  a f  * i = f i - - - L x i. 
Lr au 

(2.7) 

The immediate aim below is to study the time dependence of this Fradkin vector 
$. This time dependence stems from that of the canonical variables r = r( t )  and p = p (  t ) ,  
corresponding to the particle motion in its orbit (see the appendix for details). To 
facilitate this study, let us choose the z axis along the vector L. Then one can write 
i = (0, 0, 1) and using the polar coordinates r, 4:  

r = r e ( 4 )  (2.9) 

e (  4 )  = {cos #, sin 4, 0) = i. (2.10) 

Thus 

dr 
dt  

p = m - = m r =  m [ t e ( 4 ) + r Q e r ( 4 ) l  (2.1 1 )  

where 

e’( 4) * e(  4 )  = 0. 

According to (2.2), one can write 

L = mre x [ re  + r i e l ]  = mr’Qe x e’ = m r ’ Q { ~ ,  0 ,  1 ) .  (2.13) 

From (2.10) and (2.12), it follows that (2.8) can be expressed in the form 

i = f i  - g i  x i = f e (  4 ) - get( 4 (2.14) 

where 

(2.15) 

Comparing (2.5) with ( A l ) ,  it follows that i ( u ) =  i 2 ( l / u ) .  In order to impose on 
Fradkin’s general solution (2.4b) our intial conditions set out in the appendix (above 
(A3)), his arbitrary constant uo is chosen to be 

uo = 1/ rp (2.16) 
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( rp is defined in connection with (A2)). We also resolve the ambiguity of sign associated 
with 

P ( u ) =  f I ( l / U ) .  (2.17) 

choosing the plus sign, to find (compare (A4)) 

Therefore (2.46) can be rewritten in terms of in (A3), with r ' =  l / u ' ,  as 

By differentiation (keeping r = l / u  (2.3)): 

af 2 ?f L 
a u  ar  mi1 ( r )  
_-  - -r  - = sin( 41( r ) )  - I 

From (2.9)-(2.12) we have 

Thus the function g in (2.15) becomes 

r: 
rl ( r )  

g=-sin(4,(r)) =sgn(r)  sin(+,(r))  

(2.18) 

(2.19) 

(2.20) 

(2.21) 

where the second step follows from (A22a). It can then be seen that the functions f 
and g in (2.18) and (2.21) can conveniently be written in terms of a single function 0 
as 

f =  cos tp g = sin tp (2.22) 

where 

@ = @ ( r , p )  =sgn(r .p )4 , ( r ) .  (2.23) 

Thus the Fradkin vector k* in (2.14), by means of (2.22), (2.10) and (2.12), has 
components 

k* = {cos tp cos 4 +sin CD sin 4, cos tp sin 4 -sin tp cos 4,0}. (2.24) 

At this point, let us define a vector function 

e(  e) = {cos 8, sin e, 0) (2.25) 

which is a generalisation of the definition (2.10). Here 6 is now an arbitrary variable, 
whereas 4 denotes the azimuthal coordinate of the particle position. The vector k* in 
(2.24) has an especially simple form in terms of e (e):  

(2.26) 

which is suitable for investigating its time dependence. Due to (2.20), the time 
dependence of tp in (2.23) is 

k* = e( 4 - Q, ( r, PI 

(2.27) 

@ ( T )  = # J ( T )  for T E  (-T/2, T/2) (2.28) 

and from ( A l l )  and (A19) 
tp( N T  + T) =a( T) N an integer. (2.29) 
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Therefore, after inserting (A17), (2.29) and (2 .28)  into (2.26), we finally obtain k^ at 
arbitrary time t = NT + T as 

Q N T +  7) = ~ ( N A + +  4(7) -@(TI) = ~ ( N A + )  (2.30) 

for 

T E  (-T/2, T/2) N = O , k l , + 2  , . . . .  

It can be seen k ^ ( t )  is constant for 'almost all time', except at the specific times 
r = ( N  +f) T, with N integral, i.e. when the particle passes some aphelion, at which 
the direction of k  ̂ 'jumps' by the angle A 4  (given by (A10) and (A3)) to the direction 
pointing to the next perihelion at a later time. It should be noted that, if the initial 
condition were chosen at an aphelion (instead of at a perihelion), the role of aphelion 
and perihelion in the above conclusion would be reversed. 

The result (2.30) can be alternatively described by saying that k  ̂ is a multivalued 
function (i.e. having many branches numbered by N )  which is constant in time. In 
such a formulation, the condition for a quantity to be an integral of motion is not only 
that it shall be constant, but also that it should be a single-valued function of the 
canonical variables, as set out, for example, by Landau and, Lifshitz (1976). 

Fradkin (1967) was indeed aware of the possibility that k may be multivalued, but 
he considered it inessential. The definition of conserved quantities that he adopted 
was that such quantities (not explicitly functions of time) should have zero Poisson 
brackets with the energy. Thus, when he explicitly verified that 

(2.31) 

which is, of course, equivalent to dk*( t ) /d t  = 0, he considered k* to be an integral of 
the motion. 

Unfortunately, as was pointed out by Serebrennikov and Shabad (1971) and also 
by Peres (1979), the scalar coefficient functions, occurring in the definition (2.1), are 
singular at the turning points of the orbit. Therefore, in fact, Fradkin's result (2.31) 
does not determine dk^/dt )here. Indeed, we know from (2.30) that, just at one of 
these points, an aphelion, k changes direction aburptly (this happens at a perihelion 
with another set of initial conditions). 

The conclusion therefore is that the time dependence of k  ̂ established in (2.30) 
demonstrates that k  ̂ is not an integral of the motion for an arbitrary central potential? 
and an arbitrary orbit (i.e. arbitrary E and L ) .  

Since it has been established in the present work that k  ̂ is always directed towards 
a perihelion, it will be called the perihelion vector in the following. 

3. Condition for a perihelion vector to be an integral of the motion 

An obvious condition for the perihelion vector k^(r, p )  to be an integral of the motion, 
i.e. for k^(r) = k^(r( t ) ,  p ( t )  to be constant in time, follows from (2.30). I t  is that 

(3.1) A +  = A&( E, L )  = 271 I = 1,2,3, . . . 

t Fradkin, and other authors, give a proof that k satisfies the conditions of an integral of the motion 'almost 
everywhere'. 



Generalisation of Runge- Lenz constant 74 1 

where A+, defined by (AlO), (A3) and (A4) for a given potential V ( r ) ,  depends on 
the orbit parameters E and L. For a general potential, the condition ( 3 . 1 )  may be met 
for some particular values of E and L only, i.e. for some restricted class of orbits. 

In the Kepler (Coulomb) case V (  r )  = VK ( r )  = -A / r, A > 0, we have 

where rp and r, are functions of E and L which are readily obtained from ( A 2 )  
provided that 

-mA2 
2L’ < E < 0 .  

By contour integration in the complex r plane one obtains 

A 4 K  = 2 ~  

(3 .3 )  

(3.4) 
and it follows that A q 5 K  in the bare Coulomb case does not depend on the orbit 
parameters E and L nor on the potential strength A. This property of A q 5 K ,  as pointed 
out by Konar et a1 (1966), admits the existence of a dynamical group (0,) for motion 
in the Coulomb field. 

3.1. Example of Kepler potential perturbed by centrifugal potential energy 

As an example of a central potential lacking the above properties, let us next consider 
a Kepler potential perturbed by a centrifugal-like term V, ( r )  = - A / 2 m r 2 :  

VKC(r)= VK(r )+  V , ( r ) = - A / r - A 2 / 2 m r 2 .  ( 3 . 5 )  
This leads to the radial velocity (see (A4)) 

- V K ( r ) ] - -  
m2r2  (3.6) 

which differs from the corresponding Kepler quantity by the replacement of L2 by 

L:R= L 2 - A  (3 .7)  
which also modifies the conditions (3 .3)  to 

After inserting (3.6) into (A3)  and (A10) we obtain 

h m . C = , I r : ; ( (  2L  dr  ”“ ) I ”  

r - rp)( ra - r )  (3.9) 

This result is very similar to (3.2), although rp  and r, occurring in (3 .9)  are different. 
But the result after integration is independent of rp and ra (see (3.4) and (3.2)) so that 

A 4 ~ ~ = 2 7 T ( 1  - J i / L 2 ) - ” 2 .  (3.10) 
Therefore the perihelion vector k* may be an integral of the motion in the field VKc 
(i.e ( 3 . 1 )  may be satisfied ) for the orbits having angular momentum 

L=L.C(l )=[A/( l  - 1 - 2 ) ] 1 ’ 2  1 = 2 , 3 , .  . * (3 .11)  
provided that the strength A of the V,  term is positive. A further example will be 
discussed in section 5 .  
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4. Invariant of the motion in form of a star of perihelion vectors 

It is evident that orbits satisfying the condition (3.1) form a closed trajectory. In the 
literature, the existence of the 0, symmetry in the Kepler problem and the SU3 symmetry 
in the isotropic harmonic oscillator ( I H O )  is often connected with the fact that both 
of these examples have orbits that are closed. Let us investigate therefore a more 
general condition than (3.1) for an orbit to be closed, namely 

A&(E, L)=2.rrl/n l , n = l , 2 , 3  , . . .  (4.1) 

with l /n being a non-reducible fraction. The condition (3.1) is evidently the particular 
case of (4.1) corresponding to n = 1. Satisfying (4.1) means that during I rotations 
around the potential centre, a particle approaches perihelions (and also aphelions) n 
times, Here the period of the motion (the time to 'close' the trajectory) is nT. Following 
Konar er a1 (1966), the orbits satisfying (4.1) will be referred to as orbits with multiplicity 
n. 

For the treatment of such orbits, it is convenient to use the notation (compare the 
definition (2.25)) 

e"*J = e(2.rrj/n) (4.2) 

and also to employ the notion of correspondence (=) between a vector lying in the 
plane of motion and a complex number: 

{x,y,O}=x+iy. (4.3) 

eflJ = {cos(25-j/n), s in(2r j /n) ,  O}=[exp(i 2.rr/n)IJ. 

{ C ' , ,  I = 0, I , .  . . , ( n  - 1); cl, = exp(i 2.rr/n)} 

Thus the vector eflJ in (4.2) can be written as 

(4.4) 

As is well known, a set of complex numbers 

(4.5) 

forms an Abelian cyclic group of order n with respect to multiplication. Thus C," for 
an arbitrary integer N is a member of this set, while the sets { Ck, I /  n non-reducible, 
j = 0, 1 , .  . . , ( n  - 1)) and IC,"", 1 = 0, 1 , .  . . , ( n  - 1)) are identical to the se~(4 .5 ) .  

Now, for the orbit of multiplicity n, let us find the perihelion vector k at some 
arbitrary time written as t = T +  ( M n  + j ) T  with M integral; J = 0, 1 , .  . . , n - 1; T E  

( -  T/2, T/2). Inserting (4.1) into (2.30), we obtain for the perihelion vector at this time 

<( 7 + ( M n  + j )  T)  = e ( (  Mn + j ) 2 r l / n )  

- - en.lJ Cl:. (4.6) 

Due to the above-mentioned group property, it can be seen that, during the particle 
motion its perihelion vector k attains only a finite number n of distinct directions: 
(?".9 , q = 0, 1 , .  . . , ( n  - l) ,  which, of course, are pointing towards the n perihelions of 
the closed trajectory under consideration. Thus a set of n vectors defined as 

k*".q(r, p )  = cos(2.rrq/n)k*(r, p )  +sin(z.rrq/n)ix t ( r ,  p )  q=O, 1 , . . . ,  (n-1)  (4.7) 

should represent the desired invariant of motion for a closed orbit with multiplicity 
n. At t = 0, this set consists of the original perihelion vector k*"*'= k*(O) = e".' and the 
remaining ( n  - 1) perihelion vectors e",(', q = 1, 2, . . . , ( n  - 1). The time dependence 
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of the qth vector of the set (4.7), due to the known time dependence of k ( r , p )  in 
(2.26), is 

i f l - q ( t ) =  i n . q ( r ( t ) ,  r ( t ) )  = e(2rrq/n + 4(t)-o( t ) )  

i n . q ( T +  (Mn + j )  T )  = e(2.ir(q + b ) / n )  = ln*"q(0) = ~ i + q .  

(4.8) 

and thus, from (2.28), (2.29) and (A17), it follows by analogy, as was seen in (4.6), that 

(4.9) 

But, because of the group property of the set (4.5), the set { C i + q ,  q = 0,  1 , .  . . , ( n  - 1)) 
is the same as { C:, q = 0,  1 , .  . . , ( n  - 1)). Therefore the set (4.7) does not depend on 
time: it is really an invariant of motion. According to its geometrical meaning, it will 
be referred to as an n-arm star of perihelion vectors. 

If is worth noting here that the definition (4.7) is meaningful also for a non-integer 
q. Therefore a star consisting of n such vectors (with fixed parameter a )  

(4.10) 

is also an invariant. It differs from the perihelion star (4.7) by a rotation around the 
potential centre by an angle 27ra/n. In particular, a star with a = coincides with the 
aphelion star. 

P a + q ( r ,  p )  O s a <  1 ;  q = O ,  1 , .  . . , ( n  - 1 )  

5. Tensor integrals of the motion constructed from perihelion vectors 

Besides the 'geometrical' ipvariants: n-arm stars, discussed in section 4, one can 
construct from the vectors kn,n+q(r ,  p )  other invariants having the form of tensors. 

Let us introduce a notation A A B  for a second-rank tensor which is a direct 
(Kronecker) product of two vectors A and B :  

( A  A B ) a p  =A&.  (5.1) 

Here the subscripts a, /3 label the indices of the Cartesian coordinates. This definition 
has an obvious extension to any number of factors. 

Using the above notation, we next define the following tensor of rank n: 
n - l  * 

q = o  
9 " . " ( r , p ) =  k n . a + q + l  A i n , a + q + 2  ,, . . . A i n . a + q + n  

where each knVb means k " 3 b ( r , p )  (see (4.7)). The time dependence of this tensor is 
dictated by (4.9): 

4 n,o ( 7 + ( Mn + j )  T )  = 9 n.a ( 0 )  = 9 ' s a  ( 0 )  

i n , b + n ( r ,  p )  = Cn-'(r, p )  

(5 .3)  
where the second equality is due to the cyclic property 

(5.4) 
(which follows from (4.7)) and due to the freedom to change the order of summed 
terms. Thus it has been established that the tensor 9 " * ' ( r , p )  in ( 5 . 2 )  is an integral of 
motion for closed orbits of multiplicity n, i.e. satisfying (4.1). 

A linear combination of such tensors with different values of a parameter a is, of 
course, also an integral of the motion: 
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One can also imagine tensors of rank 2n (or 3n, etc) constructed as a linear combination 
of terms like $ " - a  A 4"-b (or 9"3a A 4".' A 9".', etc). However, the problem remains of 
how to choose sets of coefficients C,, C a b ,  C a b c , .  . . , to obtain only the independent 
invariants. Another related problem left open is which of the independent invariants 
'commute' mutually (in the sense of Poisson brackets). 

It has to be noted here that no invariants are obtained by contraction of the 
above-mentioned tensors with the invariant vector L, because 

(5 .6)  ,.,.a . L = 0 

this result following directly from (4 .7 )  and (2 .14) .  

5.1. Examples of isotropic harmonic oscillator: with and without perturbation 

Now let us consider some examples. For the case of the IHO with the potential 
V, ( r )  = p 2 r 2 / 2 m  we find 

(5 .7 )  

where rp and r, are the roots of ( A 2 ) ,  provided that 

E > / p I L / m .  (5 .8 )  

Using a new variable p = r2 we reduce the integral (5 .7 )  to the known case (3 .2) ,  
evaluated in (3 .4 ) :  

(5 .9 )  

Thus the I H O  orbit has multiplicity 2 ,  for any E and L satisfying ( 5 . 8 ) .  
The same multiplicity ( n  = 2 )  may also be obtained for the case of the perturbed 

Kepler potential V K c ,  (3 .5 ) ,  having the L dependent A 4  = A & - ;  (3 .10) .  In order to 
have n = 2 and 1 = 1 in (4.1), the strength parameter A of the V,  term must be negative 
and the angular momentum of the motion must be 

L = ( - A / 3 ) 1 ' 2  (5 .10)  

while the case of 1 = 3, 5 , .  . . , can be achieved for A positive and orbits having 

L =  L ( l ) = { h / [ l  - ( 2 / l ) 2 ] } l ' * .  ( 5 . 1 1 )  

The invariants of the motion in the case of orbits of multiplicity n = 2 are especially 
simple. The two-arm star is just { k * ( r , p ) ,  -k*(r, p ) }  and thus the second-rank tensor 
(5 .2 )  is 

(5.12) 

Choosing a set of a to consist of 0 and f we have for ( 5 . 5 )  

. 9 a p ( r , ~ ) =  F ( L 2 ,  E ) ~ a ( r , ~ ) I ; , ( r , ~ ) + G ( L 2 ,  E ) ( L x f f ) , ( i x k * ) ,  ( 5 . 1 3 )  

which is a second-rank symmetric tensor. This is the same as proposed by Fradkin 
(1967) to construct a Lie algebra for the SU, group. With 

F, G = m E / p T [ ( m E / p ) 2 - L 2 ] I 1 2  (5.14) 
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proposed by Fradkin (1967)  for the I H O  case, one obtains from (5 .13)  the well known 
invariant tensor 

a a p ( r , P )  =IlrJp+(1/I l )PaPp.  (5 .15)  

It should be pointed out that, since the result (5 .9)  for the I H O  problem does not 
depend on the orbit parameters E and L, it follows that the additional symmetry SU3 
characterises any motion in this field. But, because a single perihelion vector k(r ,  p )  
is not an integral of the motion for the I H O  problem, there is no symmetry 0, connected 
withit. For all central potentials different from the Kepler or I H O  forms, additional 
invariants (besides E and L) occur for special values of orbit parameters E and L 
only, as was discussed in, for example, (3 .11) ,  (5.10),  (5 .11)  and (5 .18) .  

The problem of Runge vectors for the I H O  case was investigated in detail by Buch 
and Denman (1975b).  Foilowing Fradkin, these authors obtained an explicit expression 
for a unit Runge vector k, (2 .1) ,  for the I H O  potential and they found that k* is not a 
constant of motion because it ‘discontinuously reverses its direction when the particle 
crosses apogee’. This is in agreement with the general considerations outlined above 
and applied to orbits having multiplicity 2. But these authors were tempted to construct 
from k ‘a true constant of the motion’ by furnishing k* with an additional sign according 
to the prescription: ‘the plus sign is used when the particle is on the right half of the 
orbit, and the minus sign when on the left half’. While such an object would indeed 
be constant in time, it cannot be called a constant of the motion, because it is not 
possible to formulate their prescription solely in terms of the canonical variables r 
and p .  

Having the I H O  results (5 .7)-(5.9) ,  it is easy to find a solution for the case of an 
oscillator perturbed by a centrifugal-like potential V, : 

Voc( t )  = p 2 r 2 / 2 m  -.4/2mr2. (5.16) 

As in the perturbed Kepler case, (3 .5) ,  the effective angular momentum (3 .7)  occurs 
in the expression for the radial velocity, which leads to 

(5.17) 

provided that L 2 >  A, E > ( l p l / m )  ( L 2  - A ) ” 2 .  The orbit satisfying the condition (4 .1)  
can be realised for the angular momentum values 

(5.18) 

The case of I >  n / 2  can be acheived for potentials having A positive and the case of 
I < n / 2  for A negative. 

If we ask how the condition (4.1) can be satisfied for motion in the perturbed 
Kepler potential VKc(r), (3.51, we immediately obtain from (3 .10)  that the angular 
momentum values must be 

L = L K c ( n ,  I )  = ( A / [ l  - (n / l )2]}”2  (5.19) 
where the case of I >  n can be achieved for potentials with A positive and the case 
I < n for A negative. 

= 2 ~ 4 (  1 - A/ L2)- ‘I2  

2 112 L =  Lo,(n, l ) = { A / [ l - ( n / 2 1 )  I} . 

6. Summary 

The time dependence of the vector k*(r ,p)  in (2.11, proposed by Fradkin (1967) as a 
generalisation of the Runge-Lenz vector, is fully investigated here. While Fradkin, 
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with the same aim, evaluated the Poisson bracket and obta iyd  the result (2.31), the 
approach adopted in the present work is to evaluate directly k (  t )  = k( r( t ) ,  p (  t ) ) .  The 
explicit forms of r (  t )  and p (  t )  corresponding to the particle motio? along its orbit are 
constructed in the appendix. These lead to the deeendence of k on t exhibited in 
(2.30). This demonstrates therefore that, in general, k changes in time and is therefore 
not an integral of the motion. 

Because of this situation, the necessary condition given in (3.1) has been formulated 
which will ensure that i ( r ,  p )  is an integral of the motion. It is verified that, for*an 
arbitrary orbit in the Kepler field, this condition is fulfilled (see (3.4)) so that k is 
proportional to the Runge-Lenz vector. For other potentials, this condition can be 
met for some particular values of E and L pertaining to the orbit. This is illustrated 
by taking the example of the Kepler potential perturbed by a centrifugal term as in 
(3.5). In this case orbits for which L has values (3.11) and energy E bounded by (3.8) 
possesses an integral of the motion k( r, p ) .  

Closed orbits satisfying the condition (4.1), i.e. having n perihelions and n aphelions, 
are investigated. It is shown that an n-arm star consisting of all n perihelion vectors, 
(4.7), and corresponding to it the nth-rank tensor, ( 5 . 5 )  with ( 5 . 2 ) ,  are both invariants 
of the motion in this case, which is proved in (4.9) and (5.3). The question as to how 
many independent tensor invariants can be constructed via an appropriate choice of 
the coefficients CO( E, L )  in (5.5) remains open. The isotropic harmonic oscillator fulfils 
condition (4.1) with n = 2, 1 = 1, according to (5.9), for arbitrary E and L, bounded 
by (5.8). The invariant star consists of k^ and -k^, while the second-rank tensor has a 
well known form given by (5.15). The perturbed oscillator (5.16), the other example 
considered in the present study, can possess orbits with any combination of n and 1 
and therefore corresponding invariants: n-arm stars and nth-rank tensors, provided 
that the value of L is chosen according to (5.18). A similar situation is established for 
the perturbed Kepler potential (3.5) with the value of L given by (5.19). 

Returning to the related question of dynamical symmetry mentioned in the introduc- 
tion, the existence of an integral of motion having generalised Runge-Lenz character 
is uniquely related to the existence of closed orbits. While Coulomb and harmonic 
potentials have this property for arbitrary L and E, it has been demonstrated here that 
a general central potential gives rise to closed orbits only for particular values of L 
and E. Such closed orbits clearly have very definite geometrical symmetry which, 
however, is not to be associated with the particular central field alone. 
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Appendix. Time dependence of canonical variables during a finite motion of a particle 
in a central potential. 

Although in general it is a textbook problem (see, e.g., Landau and Lifshiftz, 1976), 
we find it necessary to discuss explicit formulae for r( t )  and p (  t )  because, for one 
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thing, we want to remove some ambiguity concerning the sign of the radial velocity 
appearing in the work of Buch and Benman (1975b). 

The motion under consideration is described in terms of polar coordinates intro- 
duced in section 2, (2.9)-(2.12). The squared radial velocity can be obtained from 
( 2 . 6 ) ,  together with (2.11) and (2.13), as 

2 L2 
m m 2 r 2  ' 

i ' ( r )  =- [ E  - V ( r ) ]  -- 

The roots rp and r, of the equation 

i 2 ( r )  = o ('4-2) 

ensuring that i'( r )  > 0, for 0 < rp < r < r , ,  characterise the turning points. They define 
the distance from the potential centre to a perihelion and an aphelion of the orbit, 
respectively. 

Let us choose as the initial conditions 4 = 0, r = rp and 4 > 0 at t = 0, i.e. a particle 
passing a perihelion. The solution, valid for a time interval from zero to the moment 
when the particle reaches the aphelion, is known to be 

where the sign of the expression for the radial velocity, obtained from ( A l ) ,  

i , ( r ) =  

is chosen positive in order to be consistent with r and 4 being increasing functions 
during the time interval considered. The corresponding time dependence of the motion 
is given by 

Next, during the motion after passing the aphelion but before reaching the perihelion, 
r is diminishing, so the second radical of ( A l )  should be used: 

i2( r )  = - i l (  r )  (A61 

and then branches of the C#I and f, which are continuing the relations (A3) and (A5), 
can be obtained: 

and 
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In  an analogous fashion, subsequent branches of 4 and t can be calculated for the 
later motion. We see that r oscillates back and  forth between rp and  ra with period 

T = 2t,(  r,)  (A9) 

during which time the azimuthal coordinate increases by 

A 4  =241(ra). (A10) 

Because t , (  r )  in (A5) is a monotonic function, there exists a function r l (  t ) ,  reciprocal 
to t l ( r ) ,  i.e. satisfying the equation t l ( r l ( t ) )  = t .  In terms of this, the dependence of 
the first two branches of t on r, in (A5) and (A8), can be inverted to give r against t :  

f o r O s t s T / 2  
for T / 2 s  t s  T. {$- t )  

r (  t )  = 

Finally, due  to the periodicity, this dependence can be extended to arbitrary time as 

r ( N T + T ) = r ( T )  N =0,  *l, 1 2  

r(T) = rl(1.l) T E ( - T / ~ ,  T/2). 

Note that the symmetry relation 

r (  - t )  = r (  t )  (A13) 

follows from the relations ( A l l )  and (A12). 

derivative 
The time dependence of 4 is monotonic, because from (2.13) we have for its 

which can be integrated to give 

From this expression, using the property (A13), we conclude that 4 ( t )  is an antisym- 
metric function: 

4 ( - t )  = - 4 ( t )  (A16) 
and  using ( A l l )  in (A15) for r ~ ( - T / 2 ,  T/2),  we find 

~ ( N T + T ) =  N A 4 + 4 ( . r )  N = 0 , * 1 , * 2  , . . . .  (A171 

4(T’) = 4 , ( r ( r ’ ) )  T ’ E  [0, T/2).  ( A W  

For the initial time interval 4 is given by its first branch, (A3), so that 

The radial velocity r = d r / d t  has the properties 

i (  NT+ T )  = i (  T) N = 0 , * 1 , * 2 ,  . . .  (A19) 

i ( - t )  = - i ( t )  (A201 
which follow directly from ( A l l )  and (A13). For the initial time interval, i is given 
by its first branch (A4), so that 

i (  7’) = i l (  r( T’)) T‘E [0, T/2). (‘421) 
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Equations (A19)-(A21), together with (All)-(A13) and (A4) can be combined to give 

(A22a) i( t )  = sgn( i( t ) ) r l (  r( t ) )  

f o r t = N T + r '  
f o r t = N T - 7 '  

sgn( i (  t ) )  = (A22b) 

where T ' E [ O ,  T / 2 ) ,  N integral. 
In this way we have r against t and p against t by inserting into (2.9) and (2.11) 

the above expressions for time-dependent r ((All)-(A13)),  4 ((A16)-(A18)), i ((A19)- 
(A22)) and 4 (A14). 
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